From Module Decomposition to
Interface Specification

Documenting module structure
FWS Example

Specifying module interfaces
Module interface design

CIS 422/522 Fall 2011

Architecture Development Process

Building architecture to address business goals:
1. Understand the goals for the system
2. Define the quality requirements

3. Design the architecture
1. Views: which architectural structures should we use?
2. Documentation: how do we communicate design decisions?
3. Design: how do we decompose the system?

4. Evaluate the architecture (is it a good design?)

CIS 422/522 Fall 2011

Examples of Key Architectural
Structures

 Module Structure

— Decomposition of the system into work
assignments or information hiding modules

— Most influential design time structure

- Maodifiability, work assignments, maintainability,
reusability, understandability, etc.

CIS 422/522 Fall 2011

Modularization

 For large, complex software, must divide the
development into work assignments (WBS).
Each work assignment is called a “module.”

* Properties of a “good” module structure
— Components can be designed independently
— Components can be understood independently
— Components can be tested independently
— Components can be changed independently
— Integration goes smoothly

CIS 422/522 Fall 2011

Module Hierarchy

- For large systems, the set of modules need to be
organized such that

— We can check that all of the functional requirements
have been allocated to some module of the system

— Developers can easily find the module that provides
any given capability
— When a change is required, it is easy to determine
which modules must be changed
« The module hierarchy defined by the submodule-

of relation provides this architectural view

© S. Faulk 2010 5
CIS 422/522 Fall 2011

Decomposition Criteria

* Principle: information hiding

— System details that are likely to change independently
should be encapsulated in different modules.

— The interface of a module reveals only those aspects
considered unlikely to change.

« What do | do next?

— For each module, determine if its secret contains information
that is likely to change independently

- Stopping criteria
— Each module is simple enough to be understood fully

— Each module is small enough that it makes sense to throw it
away rather than re-do.

CIS 422/522 Fall 2011

Module Hierarchy

Problem

v

“Secrets”

v

“Secrets”

!

!

v

“Secrets”

“Secrets”

v

“Secrets”

!

Interface

Interface

Interface

Interface

|
Encapsulated

Encapsulated

|
Encapsulated

Encapsulated

—> Submodule-of relation

CIS 422/522 Fall 2011

—

Leaf Modules =
Work
assignments

The FWS Module Structure

An overly simplified example

CIS 422/522 Fall 2011

A Floating Weather Station

1121NM West of San Diego, CA £

Floating weather stations (FWS) are buoys that
float at sea and that are equipped with sensors to
monitor weather conditions. Each FWS has an on-
board computer that maintains a history of recent
weather data. At regular intervals the buoy
transmits the weather data using a radio
transmitter.

FOWERED EY

08 Terms of Use

¢ Currently selected station Disclaimer

<> Stations with recent data
4 Stations with no data in last 8 hours
(24 hours for tsunami stations)

UIO 4££/0c TTdll £U 1 |

7

Ko

S

Station ID Search
I ©

Station List

Observations
Moblle Access
Observations via

Google Maps
Classic Maps
Recent
Historical
DART®
MMS ADCP
Obs Search
Ship Obs Report
APEX
TAO
DODS
HF Radar
OsSMC
Dial-A-Buoy
RSS Feeds &
Emall Access

Station Status
NDBC Maintenance
NDBC Platforms
Partner Platforms

Program Info
About NDBC
Met/Ocean

DART®

VvOs

csP

I00S® Program
100S® DAC

Publications

NDBC DQC Handbook

Hurricane Data Plots
Mariners Weather
av/Gogistemas SRL, Lead|
Observing
Handbook No. 1

Sclence Education

FAQ
Contact Us

http://www.ndbc.noaa.gov/

National Oceanic and Atmospheric Administea

National Data Buoy “

Center of Excellence in Marine Technology

News LTl NDBC Web Site

Read about new web functionality. You may view the classic recent and historical maps by clicking the links on the left menu.

® Recent Data () Historical Data [} Show Labels 9
Program Filter: Owner Filter:
(] International Partners m (] Amerada Hess m
() 1008 Partners - (] Anadarko
— B — A
[_I NDBC Meteorological/Ocean 3 [JaoML 3

To save the current map view, right click on this link and select either "Add to Favorites” or "Bookmark this link".
To view observations, left-click a marker on the map.

[__Map | Satelite | Hybrid |

L "i

7

/

o9,

o
A
=

2
X
e
.
.

P
X
X
A
*

*

America ¢
» *

FOWERED B Mouse Cursor Coordinates:

&‘(&l'ﬁ.’-: LinkiMapa G [™ LT
&> Stations with recent data 1058 stations deployed Disclaimer
& Stations with historical data only 833 have reported in the past 8 hours

4 Stations with no data in last 8 hours Get Observations by Program as KML
(24 hours for tsunami stations)

<> Tsunami station in event mode

PRI R R

Get Observations by Owner as KML

10

Station 46047 (LLNR 82) - TANNER BANKS - 121NM West of San Diego, CA

Owned and maintained by National Data Buoy Center
3-meter discus buoy

ARES 4.4 payload

32.433 N 119.533 W (32°26'0" N 119°31'59" W)

Site elevation: sea level

Air temp height: 4 m above site elevation
Anemometer height: 5 m above site elevation
Barometer elevation: sea level

Sea temp depth: 0.6 m below site elevation
Water depth: 1393.5 m

Watch circle radius: 1700 yards

"Potential Explosion Hazard Exists for this Buoy"

Latest NWS Marine Forecast 1 and Latest NWS Marine Forecast 2

Important Notice to Mariners
Search And Rescue (SAR) Data

Meteorological Observations from Nearby Stations and Ships
Regional HF Radar Surface Current Observations

The QuikSCAT wind data are no longer available.

€ Currently selected station Disclaimer
<> Stations with recent data
4 Stations with no data in last 8 hours

(24 hours for tsunami stations)

CIS 422/522 Fall 2011 11

Unit of Measure: Time Zone: | Station Local Time

Conditions at 46047 as of
(4:50 pm PDT)
2350 GMT on 05/15/2010:

E (‘select)

Click on the graph icon in the table below to see a time series plot of the last five days of that observation.

P Wind Direction (WDIR): NW (310 deg true)
B wind Speed (WsPD): 9.0 mis

PC wind Gust (GST): 11.0 mis

P Wave Height (WVHT): 15m

P Dominant Wave Period (DPD): 16 sec

P Average Period (APD): 5.0 sec

B Mean Wave Direction (MWDY): S (185 deg true)
P Atmospheric Pressure (PRES): 1015.0 mb

% Pressure Tendency (PTDY): -1.5mb (Falling)
B Air Temperature (ATMP): 12,6 °C

P combined plot of Wind Speed. Gust, and Air Pressure

Continuous Winds

TIME
(PDT) PCwor B wspo

4:50 pm NW (311deg) 9.0m/s
4:40pm NW (315deg) 8.4 mis
4:30 pm NW (312deg) 8.3 mis
4:20pm NW (313deg) 8.5mis
4:10pm NW (311deg) 8.7mis
4:00 pm NW (315deg) 8.7 mis
Peak gust during the
measurement hour

TIME
(PDT) PSoor PXest
4:43 pm NW (320 deg) 11.0 m/s

121NM West of San Diego, CA

€ Currently selected station

<> Stations with recent data

4 Stations with no data in last 8 hours
(24 hours for tsunami stations)

Disclaimer

12

Drifting FWS

CIS 422/522 Fall 2011

13

Floating Weather Stations (FWS)

Floating weather stations (FWS) are buoys that float at sea and that are equipped with
sensors to monitor weather conditions. Each FWS has an on-board computer that
maintains a history of recent weather data. At regular intervals the buoy transmits the
weather data using a radio transmitter.

The initial prototype for the buoy will measure the wind speed in knots. The buoys will
use four small wind speed sensors (anemometers): two high-resolution sensors and two,
less expensive, low-resolution sensors.

Accuracy is software enhanced by computing a weighted-average of the sensor readings
over time. Each sensor is read once every second with the readings averaged over four
readings before being transmitted. The calculated wind speed is transmitted every two

seconds.

Over the course of development and in coming versions, we anticipate that the hardware

and software will be routinely upgraded including adding additional types of sensors (e.g.

wave height, water temperature, wind direction, air temperature). A system that can be
rapidly revised to accommodate new features is required.

CIS 422/522 Fall 2011

14

Initial FWS Requirements

Floating weather stations (FWS) are buoys that float at sea and that are equipped with
sensors to monitor weather conditions. Each FWS has an on-board computer that maintains
a history of recent weather data. At regular intervals the buoy transmits the weather data
using a radio transmitter.

The initial prototype for the buoy will measure the wind speed in knots. The buoys will use
four small wind speed sensors (anemometers): two high-resolution sensors and two, less
expensive, low-resolution sensors.

Accuracy is software enhanced by computing a weighted-average of the sensor readings
over time. Each sensor is read once every second with the readings averaged over four
readings before being transmitted. The calculated wind speed is transmitted every two
seconds.

Over the course of development and in coming versions, we anticipate that the hardware and
software will be routinely upgraded including adding additional types of sensors (e.g. wave
height, water temperature, wind direction, air temperature). A system that can be rapidly
revised to accommodate new features is required.

Expected changes
Behavior
C1. The formula used for computing wind speed from the sensor readings may change. In
particular, the weights used for the high resolution and low-resolution sensors may change.

Devices
C8. The wind speed sensor hardware on a FWS may change.

CIS 422/522 Fall 2011 15

FWS Likely Changes

Likely changes
Behavior

C 1. The formula used for computing wind speed from the sensor readings may vary. In
particular, the weights used for the high resolution and low resolution sensors may vary, and the
number of readings of each sensor used (the history of the sensor) may vary.

C2. The format of the messages that an FWS sends may vary.

C3. The transmission period of messages from the FWS may vary.

C4. The rate at which sensors are scanned may vary.

Devices

C4. The number and types of wind speed sensors on a FWS may vary.
C5. The resolution of the wind speed sensors may vary.

C6. The wind speed sensor hardware on a FWS may vary.

C7. The transmitter hardware on a FWS may vary.

C8. The method used by sensors to indicate their reliability may vary.

CIS 422/522 Fall 2011

16

Classifying Changes

» Three classes of change

\
— hardware
* new devices From
* new computer Requirements
Specification

— required behavior
* new functions
* new rules of computing values)
* new timing constraints

— software decisions
* new ways to represent data types
- different algorithms or data structures

CIS 422/522 Fall 2011

Top-Level Module Decomposition

« Device Interface (DI)

— Secret = properties of physical
hardware

— Encapsulates any hardware
changes

« Behavior-Hiding (BH)
— Secret = algorithms/data
addressing requirements

— Encapsulates requirements
changes

- Software Decision (SD)

— Secret = decisions by designer

— Encapsulates internal design
decisions

CIS 422/522 Fall 2011

18

DI Submodules

Device Interface « Windspeed Sensor Driver

— Service: provides access wind
speed values

_ — Secrets: Anything that would
5| Windspeed Sensor change if the current wind speed
Driver sensor were replaced with
another. For example, the
details of data formats and how
to communicate with the sensor

Transmitter « Transmitter Driver
Driver — Service: transmit given data on
request
— Secrets: details of transmitter
hardware

CIS 422/522 Fall 2011 19

FWS Modular Structure

Encapsulates all changes

if transmitter protocol changes

FWS
\4 \ 4 \4
Behavior Device Software
Hiding Interface Decision
A \ 4
Sensor Transmitter
Driver Driver
y A A A A A
Controller Message Message Sensor Data Averaaer
Generation Format Monitor Banker g

Submodule-of‘

Module

Encapsulates all changes
to the message format

CIS 422/522 Fall 2011

20

Documenting a Module Structure

Communicating Architectural Decisions

CIS 422/522 Fall 2011

21

Architectural Specification

Module Guide

— Documents the module structure:
* The set of modules

 The responsibility of each module (what kinds of
requirements can it hide)

- The “submodule-of relationship”
- The rationale for design decisions

— Document purpose(s)

- Guide for finding the module responsible for some aspect
of the system behavior

— Where to find or put information
— Determine where changes must occur
- Baseline design document
* Provides a record of design decisions (rationale)

CIS 422/522 Fall 2011 22

Excerpts From The FWS Module Guide (1)

1. Behavior Hiding Modules

The behavior hiding modules include programs that need to be changed if the
required outputs from a FWS and the conditions under which they are produced
are changed. Its secret is when (under what conditions) to produce which
outputs. Programs in the behavior hiding module use programs in the Device
Interface module to produce outputs and to read inputs.

1.1 Controller

Service

Provide the main program that initializes a FWS.
Secrets

How to use services provided by other modules to start and maintain the proper
operation of a FWS.

CIS 422/522 Fall 2011

23

2.

2.1.

Excerpts From The FWS Module Guide (2)

Device Interface Modules

The device interface modules consist of those programs that need to be changed if the input
from hardware devices to FWSs or the output to hardware devices from FWSs change. The
secret of the device interface modules is the interfaces between FWSs and the devices that
produce its inputs and that use its output.

Wind Sensor Device Driver
Service

Provide access to the wind speed sensors. There may be a submodule for each sensor type.
Secret

How to communicate with, e.g., read values from, the wind sensor hardware.
Note

This module hides the boundary between the FWS domain and the sensors domain. The
boundary is formed by an abstract interface that is a standard for all wind speed sensors.
Programs in this module use the abstract interface to read the values from the sensors.

CIS 422/522 Fall 2011 24

Module Structure Accomplishments

- What have we accomplished in creating the
module structure?

 Divided the system into parts (modules) such that

— Each module is a work assignment for a person or
small team

— Each part can be developed independently
— Every system function is allocated to some module
- Informally described each module

— Services: services that the module implements that
other modules can use

— Secrets: implementation decisions that other modules
should not depend on

CIS 422/522 Fall 2011

25

Specifying Abstract Interfaces

CIS 422/522 Fall 2011

26

Method of Communication

Module Interface Specifications
— Documents all assumptions user’s can make about the
module’s externally visible behavior (of leaf modules)
« Access programs, events, types, undesired events
+ Design issues, assumptions
— Document purpose(s)

« Provide all the information needed to write a module’s
programs or use the programs on a module’s interface
(programmer’s guide, user’s guide)

« Specify required behavior by fully specifying behavior of the
module’s access programs

+ Define any constraints
« Define any assumptions
* Record design decisions

CIS 422/522 Fall 2011 27

Need for Precise Interface Specifications

- But, informal description is hot enough to write
the software

« To support independent, distributed
development, need a precise interface
specification

— For the implementer: describes the requirements the
module must satisfy

— For other developers: defines everything you need to
know to use the module’s services correctly

— For tester: specifies the range of acceptable behaviors
for unit test

- The interface specification defines a contract
between the module’s developers and its users

CIS 422/522 Fall 2011

28

A Simple Stack Module

A simple integer stack

The interface specifies what a

programmer needs to know to use

the stack correctly, e.g. peek (int)
— push: push integer on stack top
— pop: remove top element push (int)
— peek: get value of top element

The secrets (encapsulated) any
details that might change from one
implementation to another

— Data structures, algorithms

— Details of class/object structure

Is this enough to define a
contract?

CIS 422/522 Fall 2011

What is an abstract interface?

- An abstract interface defines the set of
assumptions that one module can make about
another

- While detailed, an abstract interface specification
does not describe the implementation

— Does not specify algorithms, private data, or data
structures

— Preserves the module’s secrets
- One-to-many: one abstract module specification
allows many possible implementations

— Developer is free to use any implementation that is
consistent with the interface

— Developer is free to change the implementation

CIS 422/522 Fall 2011

30

Goals for Module Interface
Specifications

Clearly documents the behavior of the module
— reduces time & knowledge required to adopt module

Clearly documents the interfaces used by the
module

— Aids in creating stubs, mock interfaces and integration
test scripts

Improves the ability to isolate errors quickly

Defines implementer’s work assignment

— Interface specification is essentially a contract for the
developer that specifies the implementer’s task and the
assumptions that users can make

Enables straight-forward mapping between use
case requirements and methods

CIS 422/522 Fall 2011

31

A method for constructing abstract
interfaces

Define services provided and services needed
(assumptions)

Decide on syntax and semantics for accessing services

In parallel

— Define access method effects

— Define terms and local data types

— Define states of the module

— Record design decisions

— Record implementation notes

Define test cases and use them to verify access methods
— Cover testing effects, parameters, exceptions
— Test both positive and error use cases

— Support automation

— Design test cases before implementing module

Can use Javadoc or similar

CIS 422/522 Fall 2011

32

An FWS Example: The Data Banker

Interface Specification

Define services provided

Service Provided By | Tested By

1. Initialize the set of stored sensor readings. initialize TC1, TC2, TC3, TC4,
TCS5

2. Store a new sensor reading, maintaining only read, write TC1, TC2, TC3, TC4,

the necessary history, and retrieve the current
sensor reading history, keeping reads and writes
synchronized.

TCS

CIS 422/522 Fall 2011

33

An FWS Example: The Data Banker Interface Specification

Decide on syntax and semantics for accessing services

Access Methods

Access Parameter Parameter Description Exceptions | Map to
Method | name type services
initialize | sensorType String Type of sensor. 1
write sensorType:I String Type of sensor. 2

r:1 SensorReading Sensor reading value
read:0 sensorType:1 String Type of sensor. 2

:0

Vector<SensorReading> | Vector of elements of

type SensorReading

CIS 422/522 Fall 2011

34

An FWS Example: The Data Banker Interface Specification

Decide on syntax and semantics for accessing services

Access Method Semantics

Values returned

State changes

Legal call sequences

Synchronization and other call interactions

Access Description

Method

initialize | Initializes a vector of elements of type sensorType of length HistoryLength for each
sensor of sensorType with initial values of null

write Adds the SensorReading r to the back of the queue and removes the oldest sensor
reading value from the front of the queue.

read Returns the vector of sensor readings of type sensorType. With the most recent
values of the sensor readings. The vector is of length (HistoryLength * number of
sensors) of that type.

Synchronization: This module supports concurrent access to the read and write methods. Where
any read or write can occur concurrently, the read and write statements act as atomic operators
(i.e., the user will see either the sequence read.write or the sequence write.read).

CIS 422/522 Fall 2011

35

An FWS Example: The Data Banker

Interface Specification

Decide on syntax and semantics for accessing services
Local Data Types

Type

Value Space

HistoryLength

The number of sequential, past sensor values kept

and Types Used

Type

Value Space

SensorReading

v is of type SensorReading.value, and
w of type SensorReading.weight

A triple (1, v, w) where r 1s of type SensorReading.resolution,

CIS 422/522 Fall 2011

36

An FWS Example: The Data Banker
Interface Specification

Define test cases and use them to verify access method
Example

111 T1
Step | Description Input Type/Value | Expected Results Service Preamble
Initialize sensorType Type of sensor. 1
read sensorType Returns vector of null 2

values

CIS 422/522 Fall 2011

An FWS Example: The Data Banker
Interface Specification

Record design decisions

Interface Design Issues

1, Should we let the user read an empty vector of sensor readings after
initialization, or just throw an exception?

A1. Yes. An empty vector should be treated just as any other.

A2. No. There are no valid values in an empty vector that can be
averaged, so we should let he user know that the vector is empty by
throwing the exception.

Resolution: Yes. We will check values during testing to save space and
CPU cycles.

CIS 422/522 Fall 2011

38

Using Javadoc

Class DataBanker

java.lang.Object
L Fws.pataBanker

public class DataBanker
extends Object

The Data Banker provides synchronized storage for sensor readings.

Services Provided

1. Initialize the set of stored sensor readings.
2. Store a new sensor reading, maintaining only the necessary history, and retrieve the current sensor
reading history, keeping reads and writes synchronized.

Synchronization: Supports concurrent access to read/write methods. Read or write operations on a vector of
sensor readings act as atomic operations.

Exceptions: N/A

Uses: SensorReading

Field Summary

static int|HistoryLength

HistoryLength is the number of wind speed readings that are retained

Constructor Summary

DataBanker()

Method Summary

static void

initialize(String sensorType, int numSensors)

Initialize the DataBanker for a type of sensor reading.

static Vector<SensorReading>

read(String sensorType)

Retrieve a set of readings for the sensor type

VIO GcZ/occ T all VT] I

/** The Data Banker provides synchronized storage for sensor readings.
**
** Services Provided

**
** Initialize the set of stored sensor readings.
*% Store a new sensor reading, maintaining only the necessary

** history, and retrieve the current sensor reading history, keeping

*% reads and writes synchronized.

**

*% <p>

** Synchronization: Supports concurrent access to read/write methods.

** Read or write operations on a vector of sensor readings act as atomic
** operations.

** <p>
** Exceptions: N/A

*% <p>

** Uses: SensorReading
*% /

public class DataBanker
{

/** HistorylLength is the number of wind speed readings that are retained
*% [
public static final int HistorylLength = 4;

/#** Initialize the DataBanker for a type of sensor reading.

*k <p>

** Initializes a vector of elements of type sensorType of length

** HistoryLength for each sensor of sensorType with initial values of null.

*k

*% @param sensorType The String name of the sensor type

** @param numSensors Number of sensors.

*k [/

public static void initialize(String sensorType, int numSensors)
{

Vector<SensorReading> v = new Vector<SensorReading=>();

for {(int j = @; j < HistoryLength * numSensors; j++)
v.addElement(null);

map.put(sensorType, v);

e e = - 40

Benefits Good Module Specs

Enables development of complex projects:
— Support partitioning system into separable modules
— Complements incremental development approaches

Improves quality of software deliverables:
— Clearly defines what will be implemented

— Errors are found earlier

— Error Detection is easier

— Improves testability

Defines clear acceptance criteria
Defines expected behavior of module

Clarifies what will be easy to change, what will be
hard to change

Clearly identifies work assignments

CIS 422/522 Fall 2011

41

Interface Design

Considerations in interface design
Design principles
Role of information hiding and abstraction

CIS 422/522 Fall 2011

42

Module Interface Design Goals

General goals addressed by module interface design

1. Control dependencies
— Encapsulate anything other modules should not depend on
— Hide design decisions and requirements that might change
(data structures, algorithms, assumptions)
2. Provide services
— Provide all the capabilities needed by the module’s users
— Provide only what is needed (complexity)

— Provide problem appropriate abstraction (useful services and
states)

— Provide reusable abstractions

-« Specific goals need to be captured (e.g., in the
module guide and interface design documents)

CIS 422/522 Fall 2011

43

1. Controlling Dependencies

Addressed using the principle of information hiding

IH: design principle of limiting dependencies between
components by hiding information other components
should not depend on

When thinking about what to put on the interface

— Design the module interface to reveal only those design
decisions considered unlikely to change

— Required functionality allocated to the module and
considered likely to change must be encapsulated

— Each data structure is used in only one module
— Any other program must access internal data by calling
access programs on the interface

Consistent with good OOD principles

CIS 422/522 Fall 2011 44

2. Provide Services

* Interface provides the capabilities of the
module to other modules in the system,

addressed by:
 Abstraction: interface design principle of

providing only essential information and
suppressing unnecessary detail

CIS 422/522 Fall 2011

45

Abstraction

- Two primary uses

- Reduce Complexity

— Goal: manage complexity by reducing the amount of
information that must be considered at one time

— Approach: Separate information important to the problem at
hand from that which is not

— Abstraction suppresses or hides “irrelevant detail”
— Examples: stacks, queues, abstract device

* Model the problem domain
— Goal: leverage domain knowledge to simplify understanding,
creating, checking designs

— Approach: Provide components that make it easier to model
a class of problems
- May be quite general (e.g., type real, type float)
- May be very problem specific (e.g., class automobile, book object)

CIS 422/522 Fall 2011

46

What are the abstractions?

Example: Car Object

— Purpose of each?

What information is hidden?

=

! ‘ CarSpocd
;-__N_Appiel st Throttel)
I QeSpeeN)
car
CruiseControl %\i CarSimulatos] _________ 4
control
L 5! Controlter Runnabie
Drakal) ?
accoloranor() | 8¢ =
: t
onginoOM) »—Jsmc«: rol
engineOny) enableControl)
onl) disabioControi)
oM} recordSpeed)
osumed) chSpoe)
dvep

_9{ CruisoDisplay](

CIS 422/522 Fall 2011

Which Principle to Use

« Use abstraction when the issue is what

should be on the interface (form and content)

« Use information hiding when the issue is what
information should not be on the interface
(visible or accessible)

CIS 422/522 Fall 2011

48

Summary

Every module has an abstract interface that provides
a way for other modules to use its secret without
knowing how the secret is implemented

An interface is the set of assumptions that the users
of a module can make about the module

The interface specification for a module is a contract
between the users of the module and the
implementers of a module

An abstract interface specification specifies both
syntax and semantics for the interface

There is a systematic process for developing
interface specifications

CIS 422/522 Fall 2011

49

Questions

CIS 422/522 Fall 2011

50

Assignment

« For Thursday

— Standup report in class (no slides): status of major
deliverables

— Schedule project status meeting with instructor

« To do: make sure | have a link to your current assembla
site

CIS 422/522 Fall 2011

51

Career Mentorship Colloquium: Working at RDI

Brian Walch, Jason Mancuso
Resource Data, Inc.

Date: November 10, 2011
Time: 2:00 p.m.
Location: 260 Deschutes

Abstract
Brian Walch and Jason Mancuso from Resource Data, Inc. will talk about
working at RDI. RDI is an information technology company specializing in

GIS and custom software and system design and implementation. They will
also discuss current and future opportunities for employment with RDI.

CIS 422/522 Fall 2011

52

